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Nonlinear absorption of electromagnetic waves propagating through a plasma perpendicular to the
uniform magnetic field at a frequency close to electron cyclotron subharmonic frequency is investigated
by studying the dynamics of individual particle motion. The motion of the electron is described using a
relativistic Hamiltonian formalism. Second-order canonical perturbation theory is carried out to explic-
itly obtain the subharmonic response. When the variation in the parameters of the dynamical system is
slow, the motion of the particles is characterized by a conserved adiabatic invariant equal to the area
embedded by the trajectory in phase space. The energy gain of an electron has been obtained in terms of
the change in the adiabatic invariant resulting from a qualitative change in the phase orbit of the elec-
tron. A case of strong nonlinearity is considered in which the energy absorbed by an electron from the
wave is greater than its thermal energy. The amount of absorbed power is computed analytically for the

case of ordinary-mode polarization.

PACS number(s): 52.25.—b

I. INTRODUCTION

Electron cyclotron resonance heating (ECRH) is a
widely used method for auxiliary plasma heating in
fusion experiments. Electromagnetic waves are efficiently
absorbed by electrons moving in a steady and uniform
magnetic field when the wave frequency matches with the
particle gyrofrequency or one of its harmonics (i.e.,
w=nwo,). For relatively low injected microwave power,
the relevant physical processes can be described by a
linear theory. In physical situations where high power
radiofrequency sources are used (powerful gyrotrons or
free-electron lasers with peak power up to 10*-10* MW)
nonlinear effects associated with ECRH become impor-
tant. The wave-particle interaction in the presence of in-
tense high power radiation [1-4] leads to nonlinear dy-
namics governing the individual particle motion in the
neighborhood of cylcotron resonances.

Linear absorption of the electromagnetic field localized
within the plasma in the form of a radiation beam takes
place when the following conditions are met:

(a) AE <<muv?,

(b) ty>t; ,

where v, is the thermal velocity of the particle, AE is the
variation of particle energy due to interaction with the
wave, t; =L /v, (L is the beam width) is the time of pas-
sage through the microwave beam, 7, is the characteris-
tic period of trapped oscillations in phase space. When
condition (b) is broken, whereas (a) is valid, we deal with
the so-called ‘“weakly nonlinear” regime of cyclotron in-
teraction. Here we consider the strongly nonlinear re-
gime, i.e., when AE >> mv,z.

Nonlinear resonant wave-particle interaction can also
occur when the wave frequency is an integral submultiple
of the particle gyrofrequency. These are known as semi-
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cyclotron or subharmonic resonances. Cyclotron subhar-
monic resonant heating has been verified using particle
simulation codes [5] in the electron Bernstein wave heat-
ing configurations. In an earlier work [6], the problem of
absorption of electromagnetic waves with ordinary mode
polarization at a cyclotron subharmonic frequency
(w=3w, /2) has been studied for a weakly nonlinear re-
gime. Here, we develop a theory for strongly nonlinear
absorption of an ordinary wave propagating perpendicu-
lar to the magnetic field with a frequency close to elec-
tron cyclotron subharmonic frequency (0 =w,, /2).

II. HAMILTONIAN FOR WAVE-PARTICLE
INTERACTION

We consider the motion of an electron in the combined
fields of a uniform applied magnetic field B=B€, and a
transverse electromagnetic wave with ordinary-mode po-
larization propagating in the x direction. The Hamiltoni-
an for the relativistic motion of an electron interacting
with the wave is given by

H=\/m,u,zc“-i-cz(P+eA0/c-%-eAl/c)2 ) (1)

where A4,=(0,B(x,0) is the vector potential of the uni-
form magnetic field.
The vector potential of the wave field is given by

A, =¢,A(z)cosk x —wt) ,

where k, is the wave number in a direction perpendicular
to the magnetic field and A is the amplitude of the wave
beam which varies slowly in space such that the condi-
tions for adiabatic motion are satisfied. This leads to a
condition on the variation of A with z:

— <<ty , (2)
where v, is the particle velocity in the z direction. We
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then perform a series of canonical transformations [2]
from the old variables (p,,p,,x,y) to new guiding center
variables (1,0, X, Y) so that

— 1,2 2
H THO T 1 D

+ o
tv, A S J, (N, Vpo,,)cos(nd+k X —ot)

n=—o

2 +ow —_—
+i‘i— S J,2N,V oy, Jeos(n6+2k X —20t),

(3)

where N, =V2k,c /., 1 is the magnetic moment, 6 is
the gyration angle, and X, Y are the respective coordi-
nates of the particle guiding center. In deriving the
above Hamiltonian it is assumed that the relativistic
effects are small and terms quadratic in wave amplitude
have been retained. Also, since the amplitude of the
wave is slowly varying in the z direction the particle
momentum in this direction is treated as an approximate
integral of motion.

III. PERTURBATION THEORY

In order to bring out the subharmonic resonances [6,7]
which are inherently embedded in the motion governed
by the Hamiltonian in Eq. (3), we carry out a canonical
perturbation theory up to second order in the parameter
A. The resonance at a half-integer cyclotron frequency
such that o=mw,, /2, we obtain

2
H= (1_._2_""_ I—L
mo,, 2
+A2UZN1 5 2 J (N VT,
m,,}w (m/2—n) " mon
o= A2 -~
X(N VI )coszp-I—TJm(ZNl\/I )costp . 4)

Here I are 3 are canonically conjugate action angle vari-
ables. The Hamiltonian is considerably simplified by per-
forming the sum involving the Bessel functions analyti-
cally [7] and assuming small Larmor radius N, VT <<1.
For wave frequency o such that o=, /2, the Hamil-
tonian can be written as

H=QI—1I’4+aVI cosy , (5)
where
20 2 ,oa, Ny 2
Q 1 — a 3 vyNi+ 2

Electron motion governed by a Hamiltonian of similar
type has been studied by a number of workers [2,4].

IV. ELECTRON TRAJECTORIES IN PHASE SPACE

The equations of motion in the (I-y) plane are given by
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j—OH _ a
EY; Q I+2‘/Tcos¢.

In the (I-y) plane the fixed points are the following.

(i) At =0, there is an elliptic fixed point which exists
for all values of a.

(ii) At ¥=1r, a pair of fixed points are located, an ellip-
tic fixed point and a hyperbolic fixed point. These appear
only if @ >0 and a <a, =4(Q/3)*.

We are restricting ourselves to the case when Q>0.
The trajectories in the (I-i) phase plane are shown in Fig.
1. For a <4(Q/3)3/2, a separatrix exists in phase space
determined by a pair of hyperbolic fixed points. This
separatrix divides the phase plane into regions where par-
ticles are trapped by the wave and the regions in which
they are untrapped. For a=a_, the two fixed points
merge and disappear when a >a,.. For a constant wave
amplitude, the Hamiltonian is a constant of motion and
the electron orbits are given by curves of constant Hamil-
tonian in the (I-y) phase plane.

V. THE ADIABATIC INTEGRAL

We now take into account the finite width of the mi-
crowave beam in the z direction. A particle passing
through the beam along the magnetic field line will then
feel the amplitude of the wave slowly changing with time.
The dependence of A on ¢ is obtained by substituting for
the particle’s coordinate, z =v,¢ in the function A(z).
The Hamiltonian is then no longer a constant of motion
of the system. We limit our investigations to the case of
regular electron motion under adiabatic conditions de-
scribed by Eq. (2). The transition of the particle from one
trajectory to another is governed by the conservation of
the adiabatic invariant

J=¢I1dy, (7)

where the integral is taken over one complete period of
motion in phase space. The slow variation of the ampli-
tude parameter causes an initially untrapped electron to

FIG. 1. Phase trajectories in the (I-y) phase plane for a =0.5
Q372
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be trapped or vice versa so that the electron experiences a
net energy variation that is equal to the jump in the adia-
batic integral. Since we are neglecting the perpendicular
thermal velocity, before entering the beam a particle has
I =0 and hence J =0.

If a,,, is the maximum value of amplitude parameter a
(corresponding to the maximum value of amplitude,
A 1.), then under conditions when a,,,, <4(Q/3)%% the
particle trajectory does not cross the separatrix and the
adiabatic invariant is conserved: AJ =0, so that the net
energy gain of the particle is zero. When the amplitude
of the wave increases from 0 to a maximum value that
exceeds the threshold 4(Q/3)3/2, the trajectory of the
particle crosses the separatrix to pass on to a new trapped
trajectory with J=4m(). The particle again crosses the
separatrix become detrapped when the amplitude of the
wave decreases from the maximum value to zero. After
the second crossing of the separatrix to the particle can
remain on the trajectory with the same value of J
(=4mQ), or it can return to the region of phase space
from which it originally started (with J =0). In the latter
case, the value of the adiabatic invariant and hence the
energy of the particle remain unchanged. Both the above
processes can take place with equal probability [8], so
that the average change in particle energy
AI=AI/2=Q. This energy change can take place only
when a_,, >4(Q/3)*? and Q> 0.

VI. ABSORBED POWER DENSITY

The mean energy change of a particle, Al, is utilized to
calculate the power adsorption of a uniform Maxwellian
electron distribution by estimating the energy brought by
the electrons traveling along the magnetic field per unit
area in the x-y plane per unit time. On an average, every
electron brings out an energy Al, and because v, appears
in the expression for a, there is a lower bound on the ini-
tial velocities of electrons which can interact and ex-
change energy with the wave.

The absorbed power density is given by
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FIG. 2. Power absorption profile against w/w, for ordinary
wave at cyclotron subharmonic (@, /2) frequency. The curves
a, b, ¢, and d refer to incident power P,=0.1, 0.2, 0.3, and 0.4
MW/cm?, respectively.
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P=2{ “dv,v,AIf(v,), (8)

Yo
where

( )_ . 172 mvzz

J@I=n 5| e 2T, ||
ol 1 31 ®

2=6 =2 _— .

OS] Mk, 8W

The factor 2 in Eq. (8) takes into account electrons with
v, <0. The absorbed power density P depends only on Q,
the frequency mismatch factor, and on the maximum am-
plitude A ,, of the wave and is independent of the am-
plitude profile.

The absorbed power density normalized by nm,c?,
where n is the number density of electrons, is obtained as

172 N
e —vy/2T,

(10)

VII. RESULTS

In Fig. 2 we have plotted the absorbed power density P
against normalized wave frequency v=w/w, for a
Maxwellian distribution function of temperature 7,=2
(normalized in units of mc?) for several values of incident
power P,. The plasma density and magnetic field have
been taken to be equal to 1X10'*/cm® and 1 T, respec-
tively. The perpendicular index of refraction N, =k, c /o
has been assumed to be approximately equal to unity for
electron cyclotron waves with ordinary-mode polariza-
tion.

The incident power is

E2

P0=Nch2—$ ,

where L? is the cross section of the microwave beam. An
explicit evaluation of P, yields power densities of the or-
der of few MW/cm? for A ,, > 1072 Microwave radia-
tion of such high intensity has been proposed [1] to be
used to heat reactor relevant plasmas through the use of
free-electron lasers.

It is found that the power absorption attains a max-
imum in the neighborhood of electron subharmonic fre-
quency @, /2. The maximum is found to shift to lower
values of v with increase in wave amplitude. The ab-
sorbed power also increases with increase in the ampli-
tude A 4

In conclusion, the present paper describes the non-
linear absorption of electron cyclotron waves with
ordinary-mode polarization in the neighborhood of a cy-
clotron subharmonic frequency. Since subharmonic
responses are obtained only when one proceeds to a
higher-order perturbative calculation in terms of wave
amplitude, the power absorption in such processes is ex-
pected to be weaker than that at cyclotron harmonics.
However, with the recent demonstration of new mi-
crowave sources producing efficient power at high inten-
sities, such experiments may be carried out to understand
the basic physics of subharmonic heating.
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